1. PENDAHULUAN
• Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.
• Pengujian hipotesis berhubungan dengan penerimaan atau penolakan suatu hipotesis.
• Kebenaran (benar atau salahnya ) suatu hipotesis tidak akan pernah diketahui dengan pasti, kecuali kita memeriksa seluruh populasi. (Memeriksa seluruh populasi? Apa mungkin?)
• Lalu apa yang kita lakukan, jika kita tidak mungkin memeriksa seluruh populasi untuk memastikan kebenaran suatu hipotesis?
• Kita dapat mengambil sampel acak, dan menggunakan informasi (atau bukti) dari sampel itu untuk menerima atau menolak suatu hipotesis.
Penerimaan suatu hipotesis terjadi karena TIDAK CUKUP BUKTI untuk MENOLAK hipotesis tersebut dan BUKAN karena HIPOTESIS ITU BENAR
dan
Penolakan suatu hipotesis terjadi karena TIDAK CUKUP BUKTI untuk MENERIMA hipotesis tersebut dan BUKAN karena HIPOTESIS ITU SALAH.
• Landasan penerimaan dan penolakan hipotesis seperti ini, yang menyebabkan para statistikawan atau peneliti mengawali pekerjaan dengan terlebih dahulu membuat hipotesis yang diharapkan ditolak, tetapi dapat membuktikan bahwa pendapatnya dapat diterima.
Perhatikan contoh-contoh berikut :
Contoh 1.
Sebelum tahun 1993, pendaftaran mahasiswa Universtas GD dilakukan dengan pengisian formulir secara manual. Pada tahun 1993, PSA Universitas GD memperkenalkan sistem pendaftaran "ON-LINE".
Seorang Staf PSA ingin membuktikan pendapatnya “bahwa rata-rata waktu pendaftaran dengan sistem ON-LINE akan lebih cepat dibanding dengan sistem yang lama” Untuk membuktikan pendapatnya, ia akan membuat hipotesis awal, sebagai berikut :
Hipotesis Awal : rata-rata waktu pendaftaran SISTEM "ON-LINE" sama saja dengan
SISTEM LAMA.
Staf PSA tersebut akan mengambil sampel dan berharap hipotesis awal ini ditolak, sehingga pendapatnya dapat diterima!
Contoh 2 :
Manajemen PERUMKA mulai tahun 1992, melakukan pemeriksaan karcis KRL lebih intensif dibanding tahun-tahun sebelumnya, pemeriksaan karcis yang intensif berpengaruh positif terhadap penerimaan PERUMKA. Untuk membuktikan pendapat ini, hipotesis awal yang diajukan adalah :
Hipotesis Awal : TIDAK ADA PERBEDAAN penerimaan SESUDAH maupun SEBELUM dilakukan perubahan sistem pemeriksaan karcis.
Manajemen berharap hipotesis ini ditolak, sehingga membuktikan bahwa pendapat mereka benar!
Contoh 3.
(Kerjakan sebagai latihan!!!)
Eko Nomia S.E., seorang akuntan memperbaiki sistem pembebanan biaya di perusahaan tempatnya bekerja. Ia berpendapat setelah perbaikan sistem pembebanan biaya pada produk maka rata-rata harga produk turun. Bagaimana ia menyusun hipotesis awal penelitiannya?
Hipotesis Awal : .........?
PENJELASAN
• Hipotesis Awal yang diharap akan ditolak disebut : Hipotesis Nol (H0)
Hipotesis Nol juga sering menyatakan kondisi yang menjadi dasar pembandingan.
• Penolakan H0 membawa kita pada penerimaan Hipotesis Alternatif (H1) (beberapa buku menulisnya sebagai HA )
• Nilai Hipotesis Nol (H0) harus menyatakan dengan pasti nilai parameter.
H0 → ditulis dalam bentuk persamaan
• Sedangkan Nilai Hipotesis Alternatif () dapat memiliki beberapa kemungkinan. H1
H1 → ditulis dalam bentuk pertidaksamaan (< ; > ; ≠)
Contoh 4.(lihat Contoh 1.)
Pada sistem lama, rata-rata waktu pendaftaran adalah 50 menit
Kita akan menguji pendapat Staf PSA tersebut, maka
Hipotesis awal dan Alternatif yang dapat kita buat :
H0 : μ = 50 menit (sistem baru dan sistem lama tidak berbeda)
H1 : μ ≠ 50 menit (sistem baru tidak sama dengan sistem lama)
atau
H0 : μ = 50 menit (sistem baru sama dengan sistem lama)
H1 : μ < 50 menit ( sistem baru lebih cepat)
Contoh 5 (lihat Contoh 2.)
Penerimaan PERUMKA per tahun sebelum intensifikasi pemeriksaan karcis dilakukan = Rp. 3 juta. Maka Hipotesis Awal dan Hipotesis Alternatif dapat disusun sebagai berikut :
H0 : μ = 3 juta (sistem baru dan sistem lama tidak berbeda)
H1 : μ ≠ 3 juta (sistem baru tidak sama dengan sistem lama)
atau
H0 : μ = 3 juta (sistem baru dan sistem lama tidak berbeda)
H1 : μ > 3 juta (sistem baru menyebabkan penerimaan per tahun lebih besar dibanding sistem lama)
PERHATIKAN :
• Penolakan atau Penerimaan Hipotesis dapat membawa kita pada 2 jenis kesalahan (kesalahan= error = galat), yaitu :
1. Galat Jenis 1 → Penolakan Hipotesis Nol (H0) yang benar
Galat Jenis 1 dinotasikan sebagai α
α juga disebut → taraf nyata uji
Catatan : konsep α dalam Pengujian Hipotesis sama dengan konsep konsep
α pada Selang Kepercayaan
2. Galat Jenis 2 → Penerimaan Hipotesis Nol (H0) yang salah
Galat Jenis 2 dinotasikan sebagai β
• Prinsip pengujian hipotesis yang baik adalah meminimalkan nilai α dan β
• Dalam perhitungan, nilai α dapat dihitung sedangkan nilai β hanya bisa dihitung jika nilai hipotesis alternatif sangat spesifik.
• Pada pengujian hipotesis, kita lebih sering berhubungan dengan nilai α. Dengan asumsi, nilai α yang kecil juga mencerminkan nilai β yang juga kecil.
Catt : keterangan terperinci mengenai nilai α dan β, dapat anda temukan dalam bab
10, Pengantar Statistika, R. E. Walpole)
• Prinsip pengujian hipotesa adalah perbandingan nilai statistik uji (z hitung atau t hitung) dengan nilai titik kritis (Nilai z tabel atau t Tabel)
• Titik Kritis adalah nilai yang menjadi batas daerah penerimaan dan penolakan hipotesis.
• Nilai α pada z atau t tergantung dari arah pengujian yang dilakukan.
2. ARAH PENGUJIAN HIPOTESIS
• Pengujian Hipotesis dapat dilakukan secara : 1. Uji Satu Arah
2. Uji Dua Arah
2.1 UJI SATU ARAH
Pengajuan H0 dan H1 dalam uji satu arah adalah sebagai berikut:
H0 : ditulis dalam bentuk persamaan (menggunakan tanda =)
H1 : ditulis dalam bentuk lebih besar (>) atau lebih kecil (<)
Contoh 6.
Contoh Uji Satu Arah
a. H0 : μ = 50 menit b. H0 : μ = 3 juta
H1 : μ < 50 menit H1 : μ < 3 juta
Nilai α tidak dibagi dua, karena seluruh α diletakkan hanya di salah satu sisi selang
misalkan :
H0 : μμ *)=0
H1 : μμ <0
Wilayah Kritis **) : z < z −α atau ttdb < −(;)α
*) μ0 adalah suatu rata-rata yang diajukan dalam H0
**) Penggunaan z atau t tergantung ukuran sampel
sampel besar menggunakan z; sampel kecil menggunakan t.
luas daerah terarsir
ini = α
-z α atau - t(db;α) 0
daerah yang diarsir → daerah penolakan hipotesis
daerah tak diarsir → daerah penerimaan hipotesis
misalkan :
H0 : μμ *)=0 Uji Hipotesis / thomas yuni gunarto / hal 4 dari 11
2.2 UJI DUA ARAH
Pengajuan H0 dan H1 dalam uji dua arah adalah sebagai berikut :
H0 : ditulis dalam bentuk persamaan (menggunakan tanda =)
H1 : ditulis dengan menggunakan tanda ≠
Contoh 7.
Contoh Uji Dua Arah
a. H0 : μ = 50 menit a. H0 : μ = 3 juta H1 : μ ≠ 50 menit H1 : μ ≠ 3 juta
Nilai α dibagi dua, karena α diletakkan di kedua sisi selang
misalkan :
H0 : μμ *)=0
H1 : μμ ≠0
Wilayah Kritis **) : zz < −α2 dan zz> α2
atau
ttdb )<−(,α2 dan ttdb )>(;α2
*) μ0 adalah suatu rata-rata yang diajukan dalam H0
**) Penggunaan z atau t tergantung ukuran sampel
sampel besar menggunakan z; sampel kecil menggunakan t.
3. PENGERJAAN UJI HIPOTESIS
3.1 Tujuh (7) Langkah Pengerjaan Uji Hipotesis
1. Tentukan H dan H1
02* Tentukan statistik uji [ z atau t]
3* Tentukan arah pengujian [1 atau 2]
4* Taraf Nyata Pengujian [α atau α/2]
5. Tentukan nilai titik kritis atau daerah penerimaan-penolakan H0
6. Cari nilai Statistik Hitung
7. Tentukan Kesimpulan [terima atau tolak H0]
*) Urutan pengerjaan langkah ke2, 3 dan 4 dapat saling dipertukarkan!
Beberapa Nilai z yang penting
zz55=.=1.645 zz2525..==1.96
zz11=.= 2.33 zz0505..= = 2.575
3.2 Rumus-rumus Penghitungan Statistik Uji
1. Rata-rata dari Sampel Besar
2. Rata-rata dari Sampel Kecil
3. Beda 2 Rata-rata dari Sampel Besar
4. Beda 2 Rata-rata dari Sampel Kecil
Uji Hipotesis / thomas yuni gunarto / hal 6 dari 11
3.2.1 Uji Hipotesis Rata-rata Sampel Besar
Contoh 8 :
Dari 100 nasabah bank rata-rata melakukan penarikan $495 per bulan melalui ATM, dengan simpangan baku = $45. Dengan taraf nyata 1% , ujilah :
a) apakah rata-rata nasabah menarik melalui ATM kurang dari $500 per bulan ?
b} apakah rata-rata nasabah menarik melalui ATM tidak sama dengan $500 per bulan ?
(Uji 2 arah, α/2 = 0.5%, statistik uji=z)
Jawab :
Diketahui: x= 495 s = 45 n=100 μ0=500 α=1%
a) 1. H0 : μ = 500 H1 : μ < 500
2* statistik uji : z → karena sampel besar
3* arah pengujian : 1 arah
4* Taraf Nyata Pengujian = α = 1% = 0.01
5. Titik kritis → z < - → z < - 2.33 z001.
6. Statistik Hitung zxn=− μσ0/=49550045 100− /=−545.= -1.11
7. Kesimpulan : z hitung = -1.11 ada di daerah penerimaan H0
H0 diterima, rata-rata pengambilan uang di ATM masih = $ 500
Daerah penolakan H
0luas daerah terarsir =
ini = α = 1%
Daerah penerimaan H0
-2.33 0
b) Coba anda kerjakan sebagai latihan ! (H1 : μ≠ 500; Uji 2 arah, α/2 = 0.5%, statistik
uji=z)
3.2.2. Uji Hipotesis Rata-rata Sampel Kecil
Contoh 9 :
Seorang job-specialist menguji 25 karyawan dan mendapatkan bahwa rata-rata penguasaan pekerjaan kesekretarisan adalah 22 bulan dengan simpangan baku = 4 bulan. Dengan taraf nyata 5% , ujilah :
a) Apakah rata-rata penguasaan kerja kesekretarisan lebih dari 20 bulan?
b) Apakah rata-rata penguasaan kerja kesekretarisan tidak sama dengan 20 bulan?
Jawab:
Diketahui : x= 22 s = 4 n = 25 μ0= 20 α = 5%
a) Ditinggalkan sebagai latihan (H1 : μ > 20; uji 1 arah, α=5%, statistik uji = t, db = 24)
b) 1. H0 : μ = 20 H1 : μ ≠ 20
2* statistik uji : t → karena sampel kecil
3* arah pengujian : 2 arah
4* Taraf Nyata Pengujian = α = 5% = 0.05
α/2 = 2.5% = 0.025
5. Titik kritis
db = n-1 = 25-1 = 24
Titik kritis → ttdb )<−(,α2 dan ttdb )>(;α2
t < -t (24; 2.5%) → t < -2.064 dan
t > t (24; 2.5%) → t > 2.064
6. Statistik Hitung txsn=− μ0/=2220425− /=208.= 2.5
7. Kesimpulan : t hitung = -2.5 ada di daerah penolakan H0
H0 ditolak, H1 diterima ,
rata-rata penguasaan pekerjaan kesekretarisan ≠ 20 bulan